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Two image denoising approaches based on
wavelet neural network and particle swarm optimization
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Two image denoising approaches based on wavelet neural network (WNN) optimized by particle swarm
optimization (PSO) are proposed. The noisy image is filtered by the modified median filtering (MMF).
Feature values are extracted based on the MMF and then normalized in order to avoid data scattering. In
approach 1, WNN is used to tell those uncorrupted but filtered by MMF and then the pixels are restored
to their original values while other pixels will retain. In approach 2, WNN distinguishes the corrupted
pixels and then these pixels are replaced by MMF results while other pixels retain. WNN can be seen
as a classifier to distinguish the corrupted or uncorrupted pixels from others in both approaches. PSO is
adopted to optimize and train the WNN for its low requirements and easy employment. Experiments have
shown that in terms of peak signal-to-noise ratio (PSNR) and subjective image quality, both proposed
approaches are superior to traditional median filtering.

OCIS codes: 100.0100, 110.4280, 100.7410.

Image denoising is a traditional and classic problem in
image processing. The goal of image denoising is to re-
move noise from image while preserving as much as pos-
sible important features. Impulse noise is a familiar kind
of noise caused by artificial reasons or errors in decoding.
Traditional median filtering (TMF) is an often used and
efficient method to remove this kind of noise. But TMF
filters all pixels and many uncorrupted pixels are filtered
and as a result the image will lose some fine details and
may be over-smoothing. Many efforts have been done
to reduce noise while overcoming the drawback of blur-
ring image, such as nonlinear filtering[1], center weighted
median filtering[2], switching median filtering[3], and be-
sides median filtering. Wavelet has been introduced into
image denoising in recent years for its ability of localiza-
tion and approximation[4−7]. But most denoising based
on wavelet cannot remove impulse noise as efficiently as
Gaussian noise. Neural network has been in wide use for
classification for its strong ability of learning[8,9]. As a
combination of wavelet and neural network, wavelet neu-
ral network (WNN) has been in wide use for its approxi-
mation ability[10] and WNN has been applied in the fields
of chaotic systems identification (CSI)[11], nonparametric
estimation[12], speech signal processing[13] and contrast
enhancement[14].

The reason that TMF blurs image is that TMF does
not pick out what needs filtering but filter all pixels. In
this paper, WNN and modified median filtering (MMF)
derived from TMF are combined to remove impulse noise.
Feature values will be extracted on the base of MMF re-
sults. Normalized feature values are input into WNN to
determine whether a pixel is corrupted or not. The WNN
is optimized by particle swarm optimization (PSO).

TMF often has a filter window with odd size, for exam-
ple 3 × 3 or 5 × 5, and the result of TMF is the median
value of all pixels in the filter window. But when the
noise density is very high, saying over 20%, there are too
many noisy pixels left in TMF results which reduce sub-
jective quality and peak signal-to-noise ratio (PSNR) ob-

viously. Experiments showed that most left noisy pixels
were maximum or minimum pixels in the image. Accord-
ing to that, TMF are modified to MMF as

fM(i, j) =

⎧⎨
⎩

E[f(i, j)]Ω, fT(i, j) = fmax

E[f(i, j)]Ω, fT(i, j) = fmin

fT(i, j), otherwise
, (1)

where f represents the noisy image to be denoised; fM

represents MMF result image; fT represents TMF result
image; E[f(i, j)]Ω represents the mean value of all pixels
in the filter window Ω which centers on the pixel (i, j);
fmax and fmin represent the maximum and the minimum
values of the noisy image, respectively. MMF can be
seen as the combination of median filtering and mean
filtering.

General speaking, neural network seldom adopts raw
data as its input for it often solves a problem according
to a certain feature extracted. So the input of neural
network is not the result of MMF but the feature value
extracted by

e(i, j) =

∣∣fM(i, j) − f(i, j)
∣∣

fM(i, j)
. (2)

For a gray image with gray levels from 0 to 255, feature
values extracted by Eq. (2) range from 0 to +∞ which are
too scattered and it is difficult for WNN to converge in
such a wide range. To avoid data scattering and to con-
verge rapidly, the feature values must be normalized, that
is to say feature values should be mapped from [0, +∞)
onto (0, 1]. In this paper, nonlinear normalization, in fact
an exponent normalization, is adopted

σ = exp(−αe), α > 0. (3)

More details on exponent normalization can be found
in Ref. [15].

WNN takes wavelet functions as its activation func-
tions. WNN can achieve fine approximation performance
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because WNN is inspired by both neural network and
wavelet decomposition[10]. The WNN, NQ has the form

NQ(σ) =
K∑

k=1

wkϕk(σ) + λk =
K∑

k=1

wkϕ(
σ − bk

ak
) + λk, (4)

where NQ(σ) represents the output with the input σ;
ϕ(·) represents the mother wavelet activation function
adopted; Q represents the parameter set and it can be
shown as

Q = {(wk, ak, bk, λk)|k = 1, · · · , K}, (5)

wk represents the weight connecting the kth unit of the
hidden layer to the output layer unit; ak and bk repre-
sent the dilation and the translation parameters, respec-
tively; λk represents the output bias for the kth output
unit which makes it easier to approximate nonzero av-
erage functions; K ∈ N represents the number of kernel
neurons.

Total 4K parameters of wavelet neural network pre-
sented by Eq. (4) need to be optimized. After neural
network established, its parameters must be optimized
according to desired outputs. In our approaches, the de-
sired outputs are defined as

S(i, j) =
{

1, |g(i, j) − f(i, j)| > 0
0, |g(i, j) − f(i, j)| = 0 , (6)

where g represents the original image and f represents
the image corrupted by noise. If the pixel (i, j) is cor-
rupted, WNN is desired to output 1; otherwise output 0.
Accordingly, if WNN outputs near 1, the corresponding
pixels are likely to be corrupted; otherwise if near 0, they
may be uncorrupted in all probability. It is not difficult
to see that WNN works as a classifier.

The goal of optimization is to adjust the parameters
(i.e. the element in Q) in order to make the error be-
tween obtained outputs and desired outputs as little as
possible. Let A[·] represent optimization operator, the
optimization or training of WNN can be represented as

NQ = A[NQ], s.t. min{‖S − NQ‖}. (7)

The optimization will be accomplished by PSO algo-
rithm.

PSO as a member of swarm intelligence with low hard-
ware requirements and easy employ has been proved to
be efficient for many global optimization problems and
overcomes some shortages of other evolution computa-
tion methods[16,17]. The main idea behind PSO is that
social sharing of information among the individuals of a
population may provide an evolutional advantage.

Suppose that the search space is D-dimension, and
D = 4K according to Eq. (5). Each parameter is thought
as one dimension. The ith particle of the population (i.e.
the swarm) can be presented by a D-dimensional vector
as

Xi = (xi1, xi2, · · · , xiD)T. (8)

Each particle presents a potential solution, and the so-
lution has D-dimensions. Each particle (solution) means
a point in D-dimensional space. The population is

thought as the set of potential solutions. The goal of
PSO algorithm is to find the best point satisfying Eq.
(7).

The velocity (i.e. the position change) of the ith parti-
cle can be represented by another D-dimensional vector
as

Vi = (vi1, vi2, · · · , viD)T. (9)

Two important variants play an important role in PSO.
One is the best previously visited position of the ith par-
ticle which can be denoted as

Pi = (pi1, pi2, · · · , piD)T. (10)

The other is the best particle of the swarm which is
indexed by g and can be denoted as

Pg = (pg1, pg2, · · · , pgD)T. (11)

In PSO, “best particle” means the most wanted re-
sult, say, the result satisfying minimum mean square er-
ror (MSE).

Let the superscripts n ∈ N denote the iteration number
and the swarm can be manipulated according to

vn+1
id = ωvn

id + c1r
n
1 (pn

id − xn
id) + c2r

n
2 (pn

gd − xn
id), (12)

xn+1
id = xn

id + λvn+1
id , (13)

where d = 1, 2, · · · , D ∈ N; i = 1, 2, · · · , N ∈ N, and N
is the size of swarm (population); n = 1, 2, · · · , G ∈ N
determines the iteration number, and G is the maximum
iteration given before c1 ∈ R and c2 ∈ R are positive con-
stants called cognitive and social parameters respectively
which can be used to adjust the impact intensity of Pi or
Pg; r1 ∈ R and r2 ∈ R are random numbers distributed
uniformly in [0, 1]; ω ∈ R is called inertia weight and
λ ∈ R is called constriction factor which is used alterna-
tively to ω ∈ R to limit velocity. For PSO, the iterative
process will continue until a satisfied result obtained or
the maximum iteration reached.

It is worth noticing that velocity should be limited by
a threshold Vmax which is very crucial because too large
velocity can cause particle moving past good solutions.
And on the other hand, too small velocity also can cause
insufficient exploration of the solution space. In fact, it
is better to locate optimum area in large velocity and
then continue to search in the area finely in small ve-
locity. Velocity adjustment can be achieved by adjusting
the parameters: ω, λ, and Vmax.

As a classifier, the task of WNN is to map corrupted
pixels to a number near 1 and to map uncorrupted pixels
to a number near 0. There are two kinds of pixels in a
noisy image: corrupted and uncorrupted. Accordingly
two denoising approaches can be established.

Approach 1 (App1): WNN is used to distinguish
the uncorrupted pixels from others in MMF result im-
age. The distinguished pixels by WNN according to a
threshold T1 ∈ [0, 1] are replaced by their original values
in the noisy image. Let R1 represent the result image
obtained by App1, then App1 can be summarized as

R1(i, j) =
{

f(i, j), if NQ(σ) ≤ T1,
fM(i, j), otherwise, T1 ∈ [0, 1]. (14)
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Approach 2 (App2): WNN is used to distinguish the
corrupted pixels from others in noisy image. The distin-
guished pixels should be replaced by the corresponding
MMF results, other pixels should keep unchanged. Like
App1, App2 can be summarized as

R2(i, j) =
{

fM(i, j), if NQ(σ) ≥ T2,
f(i, j), otherwise, T2 ∈ [0, 1]. (15)

It is noticeable that the two approaches can remove
noise in noisy image independently. Experiments show
that it is better to set T1 in the interval [0.22, 0.29] and
T2 in [0.30, 0.40]. In fact, the two approaches App1 and
App2 perform two different strategies: App1 picks those
pixels which are uncorrupted but are filtered as noisy
points by mistake; App2 only picks those corrupted pix-
els and then others will be filtered.

Mexican hat function was selected as the activation
function or the mother wavelet function which is defined
as

ϕ(t) = (1 − t2)e−t2/2. (16)

The number of kernel neurons was set to 3 and the pa-
rameters of WNN used in the two approaches were listed
in Table 1. The parameters in PSO were listed in Table
2. More details on parameter selection and convergence
in PSO can be founded in Ref. [18].

To overview the total image denoising process, Fig. 1
shows the diagram of the optimization process of WNN
and relative symbols appeared in this paper are shown
in brackets; Figure 2 shows the diagram of the process of
optimized WNN denoising image. And to evaluate the
performance of App1 and App2 based on WNN, experi-
ments were conducted on several 256-leveled gray images
like Lena, Elaine, Cameraman, Peppers, Tree, Bridge
and House (512 × 512) at noise densities from 0.05 to
1.00. The image Lena with 20% noise was used to train
and optimize the WNN and other images were used to
evaluate the performance. A comparison between App1,

Table 1. Parameters Used in WNN

w1 a1 b1 λ1

0.26122 0.29464 −0.46307 0.20293

w2 a2 b2 λ2

0.67433 −0.60032 −0.013365 −0.38569

w3 a3 b3 λ3

0.28135 −0.6167 −0.21892 0.52764

Table 2. Parameter Selection in PSO

Parameter Value

Swarm Size (N) 20

Search Space Dimension (D) 12

Maximum Iteration (G) 200

Cognitive Parameter (c1) 2.0

Social Parameter (c2) 2.0

Inertia Weight (ω) 0.8

Constriction Factor (λ) 1.0

Maximum Velocity (Vmax) 3.0

Fig. 1. Optimizing WNN by PSO.

Fig. 2. Image denoising by optimized WNN.

Fig. 3. Denoising results (PSNR) on Elaine.

App2, two-dimensional (2D) TMF (with 3 × 3 filtering
window) was made.

PSNR was selected to compare the performance quan-
titatively. Part of the experiment results, some PSNRs
obtained by three methods are listed in Table 3. And to
observe the PNSRs visually, the PSNR results of the im-
age Elaine are shown in Fig. 3. And Fig. 4 shows the de-
noising results by different methods on the image Elaine.

In Fig. 3 and Table 3, it is not difficult to see that both
App1 and App2 are superior to TMF in terms of PSNR,
especially when the image is highly corrupted. TMF has
left quite a few noticeable corrupted pixels in Fig. 4(c).
App1 and App2 are very close in denoising performance,
which can be seen according to the subjective image
qualities of Figs. 4(d) and (e). More other experiments
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Table 3. Experimental Results (PSNR: dB)

Noise Density (%)

5 10 20 30 50 70

Elaine

TMF 32.40 31.64 28.27 23.38 15.35 10.05

App2 37.76 34.78 31.08 28.36 23.43 18.68

App1 38.90 35.96 32.20 29.25 23.84 18.81

Cameraman

TMF 30.37 29.63 26.72 22.71 14.98 9.91

App2 34.26 32.68 29.64 27.23 22.98 18.11

App1 34.71 32.78 29.60 27.12 22.61 17.98

Peppers

TMF 34.30 33.05 28.27 23.27 15.12 10.04

App2 37.52 34.56 30.70 27.84 22.70 18.42

App1 38.67 36.00 31.94 28.80 22.82 18.48

Fig. 4. Denoising results on Elaine (local 128× 128 with 20%
noise). (a) Original image; (b) noisy image; (c) TMF denois-
ing, PSNR = 28.27 dB; (d) App2 denoising, PSNR = 31.08
dB; (e) App1 denoising, PSNR = 32.20 dB.

besides the listed in paper, like Tree and Bridge, have
also proved that.

Wavelet neural network is introduced into image de-
noising in this paper. WNN is used to distinguish the
corrupted pixels or uncorrupted pixels from others. Two
approaches based on WNN are proposed. In App1, cor-
rupted pixels distinguished by WNN are replaced by

MMF results. And uncorrupted pixels distinguished by
WNN are restored to their original values in App2. The
optimization of WNN is achieved by PSO. Experimental
results show that both the two approaches proposed in
this paper achieve much better performance in terms of
PSNR and better subjective image quality. And further
effort will be conducted on multiwavelet neural network
(MWNN).
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